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Abstract—Momentum and heat transfer in power-law-fluid flow over arbitrarily shaped two-dimensional

or axisymmetric bodies are examined theoretically. The Merk type of series expansion technique is used

for the analysis. The solutions to the governing equations are obtained as universal functions which are

independent of the geometry of the problem. With the universal functions obtained, the examples for a

vertical flat plate, a horizontal cylinder, a sphere and a vertical cone are given and their results are also
compared with the existing results in the literature

1. INTRODUCTION

HEAT TRANSFER in non-Newtonian fluids from external
surfaces of bodies of various geometries has been the
subject of numerous investigations during the past
decades. The interest in this subject still continues.

Acrivos [1] was apparently the first to investigate
the natural convection behavior of non-Newtonian
fluid flow from a body with an isothermal surface.
Since then quite a number of works have been suc-
cessfully carried out [2-12]. An excellent review on
this subject of convective heat transfer in non-
Newtonian fluids has recently been made by Shenoy
and Mashelkar [13].

Most of the investigations on free convection in
non-Newtonian fluids are concerned with a simplified
model neglecting the convective term in the governing
momentum equation under the assumption of very
large Prandt] number and with simple geometries such
as a flat plate or a horizontal cylinder.

In this analysis, we propose an exact solution for
which the convective term is retained in the governing
momentum equation, and is valid for general two-
dimensional or axisymmetric bodies. Although, in
general, the Prandtl number for a non-Newtonian
fluid is large, the effect of the convective term on the
heat transfer rate is investigated here.

2. PROBLEM STATEMENT AND
MATHEMATICAL FORMULATION

Consideration is given to the steady, natural con-
vective power-law fluid in laminar boundary layer
flow over two-dimensional or axisymmetric bodies of
uniform surface temperature 7, situated in an infinite
ambient fluid of undisturbed temperature 7,. The
flow situation is illustrated in Fig. 1. The coordinate
X is the distance measured along the surface from the
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lower stagnation point when the surface is heated, or
from the upper stagnation point when the surface is
cooled ; y is the distance along the outer normal to the
body. The corresponding velocity components are #
and #. For rotationally symmetric bodies, 7, which is
a function of % only, is the radial distance measured
from the axis of symmetry to the surface of the body.

Furthermore, constant properties are postulated,
except for the density in the buoyancy term. As usual,
the frictional dissipation term in the energy equation
is neglected.
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F1G. 1. Physical model and coordinate system.
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acceleration vector in X-direction

specific heat

energy factor, equation (22)

dimensionless stream function,

equation (13)

f1, f2. f5 universal stream functions,
equation (23)

Gr generalized Grashof number,

equation (6)

Grashof number for Newtonian fluids

consistency index

thermal conductivity

reference length

flow behavior index

u  Nusselt number

generalized Prandtl number, equation (6)

coordinate measured in the radial

direction

surface temperature

temperature outside the boundary layer

velocity function, equation (12)

velocity component in %-direction

velocity component in j-direction

streamwise coordinate measured along

the surface
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NOMENCLATURE

¥ coordinate measured along the outer
normal to the body.

Greek symbols
o angle between the local gravitational
acceleration vector and the outward
normal to the body contour

B coeficient of thermal expansion

y term defined in equation (18)

n transformed dimensionless coordinate,
equation (14)

0 dimensionless temperature function,

equation (6)

0,,6,,6, universal temperature function,
equation (24)

A generalized wedge parameter,
equation (17)

& transformed dimensionless coordinate,
equation (14)

) fluid density

Tw shear stress at the wall

¢ term defined in equation (5)

¥ stream function, equation (13).

The governing boundary layer equations are then

0 __ 0 __
52 P+ 5509 =0 (1)
_ou _oi K o |oaloal!
AN ““Xﬁ(T‘Tw“;b;-[éﬁ & ]
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cT oT k 0°T
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uﬁ U*a*.};:;?payj

The boundary conditions associated with the problem
are

i(%,0) = 6(x,0) = 0,

#(%, 00) = 0,

T(%,0) = T,

T(x,0) - T, @)

where B, k, and T are the thermal expansion
coefficient, thermal conductivity, and temperature of
the fluid, respectively. The quantities X and n are
empirical constants of the power-law model, and a,
is the component of the acceleration vector in the
direction of increasing x. No distinction is made as
to the origin of the field force; e.g. gravitational or
centrifugal. For the convenience of later discussion,
we write

a, = Fap(®) {“ for7,>To (5

+ forT,<T,

where ¢ is a non-dimensional function of X, and a is
a positive constant having the dimensions of accel-
eration. Consequently, in the gravitational field, if
T, < T, a, = g sin (&), « being the angle between the
local gravitational acceleration vector and the out-
ward normal to the body contour. In writing equations
(2) and (3), it has been assumed that 8|(T,— T,,)| « 1
so that the viscous dissipation is ignored.

By introducing the following dimensionless quan-
tities :

y T-T,
x=3%/L, y= %G,‘JZ("“’, r="¥L, 0= T T _;
2/(n+ 1)
Py = PG (KY™ L{=mi+n)
k \p
X [Lﬁal Tw — Tcol] 3(n+ 1}/ 2(n+ 1)
2r2n
p°L n
Gr = ILBaT, ~ T
i 66}(/2("+ )]
U= ———-———————-— . L ———
V(LBal(T, —T..)D) VBT, —T.)D)
(6)

where L is a characteristic length, P, the generalized
Prandtl number and Gy the generalized Grashof num-
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ber, the governing equations become

0 0
a(r'u)-f-é—(r'v):O ™
6u 6 6u ""6u
00 a0 ,0%8
ua +v ay =Py’ ay (&)
with boundary conditions
u(x,0) =v(x,00=0, 6(x,0=1
u(x, 00) = 0, 8(x, 0) - 0. (10)

If one compares equations (7), (8) and the associated
boundary conditions with those for forced flow (see,
e.g. ref. [14]), one recognizes their close resemblance.
This leads to proposing a hypothetical or ‘equivalent’
outer stream dimensionless velocity function, U(x), in
such a way that

b= UdU

= (2 J ) (%) dx)l/z.

The continuity equation (7) is automatically sat-
isfied when a dimensionless stream function, v, is
introduced, i.e.

¥ =+ 1" 1 m)

and defined by ru = 0y/0y, rv = — 0y /ox.

The x, y coordinate system is transformed into a
new dimensionless coordinate system by adopting
new dimensionless variables

(1n

so that

(12)

(13)

ézf nUZn-lrn+ldx
0 (14
n = Ury[(n+ 1§~ 1e+D

where r is set to 1 for the two-dimensional case. From
the above transformations, one finds

u=Uf’ (15

B nryr!
°T Tl gy

{f+(n+1)£ f+(A+v—1)nf} (16)

where the prime denotes differentiation with respect
to #.

The ‘generalized wedge parameter’ A and y are
defined respectively by

(4 1)EdU  (n+D)epe

A= dE T aUuPFTpl an
(n+1)¢ dr
=TT @ (18)

The quantity A is a function of n and ¢, i.e. x, and
can be calculated explicitly if » and U are given. For
Newtonian fluids, n =1, and A will reduce to the
wedge parameter defined by Lin and Chao [15].

The boundary layer equations with associated
boundary conditions may be reduced to the following
system :

6 /9
P14 S T+ AO=S = e DE )
(19)
i 4 = ( f)
p oS0 =n “)éa(g, ) (20)
fE0)=f¢0=0 6¢0=1
f’(é’ w)—-'oa 9(6, a))—»O

where 9(0,1)/3(¢,n) and 8(f",f)/0(&,n) denote the
Jacobians.
The quantity E defined by

nA r— D/(n+ 1)
E=|—
7]

is a special parameter only for the non-Newtonian
fluid, and it reduces to 1 for a Newtonian fluid. Like
A, it depends upon the behavior index n, the body
contour x, U, and ¢.

When n =1, E = 1, the equation pair, equations
(19) and (20), reduces to that given by Lin and Chao
[15].

The solution to equations (19) and (20) may be
written in Merk type series form as modified by Kim
et al. [14] as

22

dA
f(A’”’n) = fO(A>,1’n)+(n+1)€Ef1(Aa n,n)

d’A
+(n+ 1)262 d—ész(A, n, n)

|:(n+1)€ ] fiAnn+ - (23)
and
B(A,'I, n) O(A ’15")+(n+1)§ dé 0 (A ’Ta”)
d’A
+(n+1) fzdiz (A, )
A 2
[(n+1)§ f] O:(A,nmy+ -0 (29

Upon substituting both fand 8 into equations (19)
and (20), and collecting terms free of dA/d¢, and then
terms common to, (n+1)EAA/AE, (n+1)2E2d3%A/
dé?, ... ,etc.,, a sequence of ordinary differential
equations is obtained. The first pair in the sequence

(fo, 00) is

LFo" T+ fofo+ A —(fD)) =0 (25)
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and
EB’(, +fobo =0 (26)
with boundary conditions
SoA,0) = f4(A,0) =0, 0,(A,0)=1 .
oA, 00) =0, 6o(A, ) 0. 27

The remaining differential equations with their associ-
ated boundary conditions are

Lfol = 7+ 1+ fofi + MO =210 S)

_ 9(fo.fo)

+@+ D) (fofi—fofD) = 3 (28)

E
EG'{ +(fob1+ £160)

(80, /o)

=@+ (fo0, -0 /) + ) 29)

Lfol = S+ fo S+ o fat (oS =0 D)
—A0, =2/ D) -2+ D) (fofa=fof2) =0 (30)

E
—— 05+ (020 +06/2) — (fo0, 80/
nPy

T.-C. A. CHANG et al.

In obtaining equations (25)—(31), the term | f"|"~!
has been approximated by |f4*"'. This approxi-
mation will be verified later by the fact that the first
term of series (23) dominates the whole series.

All equation sets f; and 6, (i=0,1,2) can be
regarded as ordinary differential equations. It should
be noted that f; and 6, are universal in the sense that,
for a given set of A, E, Pg, and n, they may be
evaluated once and for all. In fact the quantity E/nPg
appearing in equation (31) may be treated as a single
parameter, but for the convenience of comparison and
discussion, the parameters E, Pg, and n are treated
separately. These universal functions have been evalu-
ated numerically by using the fourth-order Runge—
Kutta method, and are tabulated for a range of
Prandtl numbers which are generally adequate for
technological applications [16}. Parts of the tabulated
functions are reproduced in Tables 1—3. Although
no detailed error analysis has been attempted, the
values presented are believed to be accurate to within
four to six significant digits. The best way to check
the accuracy is to compare them with published data.

3. COMPARISON AND DISCUSSION

To demonstrate the capabilities of the present

(0o, fo) method of analysis, the local heat transfer for iso-
— = =2(n+1 0,—06 31 . ’ . .
+ 0(A,m) (n+1) (/602 =00f2)  (31) thermal objects of several geometrical configurations
have been examined. A few selected instances are also
= fi(A = 0.(A = .
JiA,0) = fi(A,0) = 0,(A, 0) = 0 presented. The generalized shear stress at the wall for
fi(A,00) =0, 0.(A,0)—=0 (=1,2). (32) power-law fluids can be written in a form which is
Table 1. Wall derivatives of universal functions (n = 0.50, P, = 100)
E A . 8, "x 10 g,x10  fox10  6,x10?
0.20 0.00858303 —0.59876389 —-0.01112 —1.99150  0.0247  4.5845
0.40 0.01986454 —0.79381729 —0.01287 —1.31116  0.0285  3.0169
0.60 0.03241876 —0.93553297 —0.01400 —1.02532 0.0310  2.3584
0.20 0.80 0.04585670 —1.05068080 —0.01480 —0.85766  0.0328 1.9709
’ 1.00 0.05997438  —1.14923810 —0.01573 —0.75421 0.0348 1.7380
1.20 0.07464249  —1.23619480 —0.01603 —0.67146  0.0354 1.5428
1.40 0.08977202 —1.31447630 —0.01672 —0.61622  0.0370 1.4195
1.60 0.10529784  —1.38596880 —0.01697 —0.56218  0.0375 1.2909
0.20 0.01328172 —0.47977373 —0.01899 —1.70044  0.0419 40164
0.40 0.03069350 —0.63546643 —-0.02042 —1.12216  0.0451 2.4106
0.60 0.04996748 —0.74773425 —0.02184 —0.80751 0.0475 1.8707
0.60 0.80 0.07052022 —0.83856551 —0.02296 —0.67287  0.0499 1.5553
: 1.00  0.09201670 —0.91587252 —0.02395 —0.58701 0.0520 1.3556
1.20 0.11426286 —0.98375792 —0.02430 —0.51807  0.0538 1.1901
1.40 0.13712662 —1.04461870 —0.02553 —0.47997  0.0555 1.1087
1.60 0.16051752 —1.10001940 —0.02588 —0.43811 0.0564 1.0070
0.20 0.01621356 —0.43182252 —0.02139 —1.41749  0.0474  3.2610
040 0.03742822 —0.57156355 —0.02479 -0.92431 0.0552  2.1146
0.60 0.06087366 —0.67213931 —0.02686 —0.71796  0.0608 1.6236
1.00 0.80 0.08578700 —0.75308825 —0.02814 —0.59744  0.0639  1.3436
: 1.00  0.11178444  —0.82180064 —0.02895 —0.51622  0.0654 1.1594
1.20  0.13863422  —0.88200235 —0.02969 —0.46052  0.0666 1.0370
1.40 0.16618309 —0.93588037 —0.03027 —0.41750 0.0672  0.9429
1.60 0.19432735  —0.98485785 —-0.03060 —0.38587 0.0672 0.8760
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Table 2. Wall derivatives of universal functions (n = 0.70, Pz = 100)

E A " @, "% 10 @, x10  fix10 @,x10°

0.20 0.02596181 —1.03716210  —0.03541 —2.15682  0.0718  4.6319
0.40 0.05075480 —1.29669380  —0.03454  —1.34075 0.0703  2.8662
0.60 0.07503995 —1.47653810  —0.03380 —1.01710 0.0689  2.1675
0.80 0.09896967 —1.61838360  —0.03325  —0.83457 0.0679 1.7729

020 100 0.12262100 —1.73724780 —0.03259 —072006 00663 1.5314
120 0.14604213 —1.84046420 —0.03236 —0.63284 0.0658  1.3442
140 0.16926565 —193222570 —0.03178 —0.57179  0.0646 12141
160 0.19231537 —201517690 —0.03161 —0.52093  0.0644  1.1034
020 0.03670394 —0.80486003 —0.05143 —1.63252 0.1012  3.5686
040 007159650 —1.00476550 —0.04968 —1.10551 0.1063  2.0851
0.60 0.10566498 —1.14274700 —0.04815 —0.77206 0.1013  1.6012
ogo 080 013914935 125124710 —0.04710 —063509 00973 13314
60 100 017217232 —134193710  —0.04630 —0.54640 0.0945  1.1545
120 020480901 —1.42050410 —0.04539 —048093 00920 1.0173
140 023711152 —1.49020030 —0.04444 —043326 00895 09186
1.60 026911686 —1.55307280 —0.04401 —0.39602 0.0884 08408
020 0.04304010 —0.71447656 —0.06138 —142527 0.1195 3.1339
040 008383433 —0.89105783 —005893 —0.88789 0.116]  1.9279
0.60 0.12358921 —101266540 —0.05701 —0.67378 0.1128  1.4537
loo 080 016260109 —110BII1I0 —005542 —0.55460 0.109  1.1934
00 100 020102090 —1.18775180 —0.05413 —0.47450 0.1074 10152
120 023894219 —125663690 —0.05310 —042023 0.1051  1.8992
140 027643028 —131765430 —0.05218 —0.37802  0.1034  0.8071
160 031353255 —137262360 —0.05138 —0.34576 0.1016  0.7384
analogous to that for Newtonian fluids as where
Ty dA

S(A0,n) = fo5(A,0,m) +(n+1)E—= f1(A, 0,n)

d¢

/2
G2+ D I:ﬁal TWL_ Tml] K

d’A
+(n+1)2éza—é—5f’§(A,0,n)+ e (34)

Un"
=t— el S A 0,n)|" (33 . . .
[(n+ )&=+ I/ mi" (33 In a similar way, the local heat flux is defined in terms

Table 3. Wall derivatives of universal functions (Pz = 100)

n E A A g, "% 10 #,x 10 Fix 10 @, x 102
0.34326 149619 012028242 —1.20918220  —0.02073  —0.51934  0.0452 1.1193
0.54292 148473 0.14186399 —1.09347250 —0.02399  —0.46331 0.0519 1.0635
0.84866 143858  0.16167984 —0.98116448  —0.02871 —0.42873  0.0617 0.9885
0.50  1.08385 1.36034  0.16588548  —0.91069683  —0.03098 —0.41458  0.0682 0.9544
1.40056 1.09039  0.14265973  —0.79375038  —0.03332  —0.44851 0.0706 1.0391
1.53577 0.66698  0.08175254 —0.64203109 —0.03223 —0.60260  0.0875 1.4119
1.53944 0.36932  0.04052499  —0.50872100 —0.02970 —0.87864  0.0610 2.0680
0.51941 124342 0.18922056 —1.42168320 —0.03844 —0.48537  0.0777 1.0326
0.68144 1.23487  0.20401151 —1.33074800  —0.04489  —0.45691 0.0931 0.9694
1.02496 1.13409  0.21498401 —1.17772450  —0.05250 —0.44830  0.1058 0.9807
067 112213 105450 020475480 —1.12410160 —0.05442 —0.45684  0.1104 0.9924
: 1.18910 0.93737  0.18581948  —1.06790140  —0.05071  —0.48662  0.0985 1.0624
1.23052 0.78365  0.15765130 —1.00040080 —0.05531  —0.54067  0.1112 1.1726
1.24901 0.58524  0.11898888 —0.90773786 —0.05763 —0.66099  0.1182 1.4431
1.24621 0.33007  0.06768436  —0.75454546  —0.05735 —097160  0.1156 2.1140
0.72872 1.10010 025762999 —0.15597539  —0.00612 —0.04477  0.0115 0.0916
0.82789 1.09320  0.26516929 —0.15079558  —0.00646  —0.04347  0.0221 0.0892
0.93718 1.06509  0.26812893  —0.14511447 —0.00664 —0.04267  0.0124 0.0875
0g3 100242 101663 026246141  —0.14085415  —0.00710  —0.04345  0.0132 0.0910
: 1.04546 094520  0.24958995 —0.13659754  —0.00697  —0.04521 0.0128 0.0940
1.07356 0.84667  0.22904496  —0.13162523  —0.00709 —0.04922  0.0132 0.1015
1.08998 071483  0.19930033 —0.12511812  —0.00776  —0.05402  0.0146 0.1114

1.09641 0.54041 0.15747351  —0.11557619  —0.00834  —0.06568 0:0153 0.1394
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Table 4. Comparison oi generalized local Nusselt number for vertical flat plate (n = 0.5)

Nu /G Y+ ) pafant 1)

X Acrivos [1]t Shenoy and Ulbrecht [6]f Chen [3]f Present (P = 100)
0.0033 1.5802 1.49431 1.4273 1.4428
0.0703 0.8571 0.81056 0.7742 0.7787
0.2100 0.6886 0.65120 0.6220 0.6243
0.5290 0.5725 0.5413 0.5171 0.5179
0.8009 0.5268 0.4982 0.4759 0.4761
1.1796 0.4875 0.4611 0.4404 0.4404
1.6972 0.4533 0.4287 0.4095 0.4091
2.3915 0.4233 0.4003 0.3824 0.3816
3.2979 0.3967 0.3754 0.3583 0.3575
4.5000 0.3731 0.3528 0.3370 0.3358

t Data are for Pr > 1.

of the generalized local Nusselt number

Nu, Ur
Gy = [(n+ D] T+ 1)

[—8(A,0,n)] (35)
where

dA
(A, 0,n) = 05(A,0,m)+(n+1)¢ a 07(A,0,n)

d’A
dé?

Once n and the geometry of the object are given, all
the necessary information can be obtained. The shear
stress at the wall and the local heat transfer can be

readily obtained by using the tabulated data of the
universal functions.

+(n+ 128 05(A,0,m) + -+ (36)

3.1. Natural convection over a vertical flat plate

Considerable attention has been given to the case
of non-Newtonian natural convection over a vertical
flat plate. The results for the local heat transfer
coefficient for n = 0.5 are shown in Table 4, along with
the data obtained by using the equation presented by
Acrivos [1], Shenoy and Ulbrecht [6], and Chen and
Wollersheim [§].

10
¥ Shenoy and Ulbrech(6}
Q Present Work (B, = 100)
o8t
l
oef
S}
<
04
%
9
o.z2r
Vvv
Ve
[¢]

. N P U - A
04 [eX:] .2 ,Z' 1.6 20 2.4 28

F1G. 2. Variation of 8 with ’ for 1000 ppm CMC (n = 0.927)
for a vertical flat plate (n” is defined by equation (3) [6]).

The local Nusselt number computed by the present
method is about 10% below that of Acrivos. Since
Reilly et al. [2] reported that the predictions of Acrivos
were about 5-10% higher than the experimental
findings, the behavior of the present results is close to
the observation of Reilly ef al.

A comparison of the dimensionless temperature dis-

‘tribution of a flat plate predicted by the present analy-

sis and the experimental findings of Shenoy and
Ulbrecht [6] is given in Fig. 2. The agreement is con-
sidered to be very good.

Table 5 provides a comparison of average Nusselt
numbers (with Pr = 100) obtained by the present
method, the exact solution of Acrivos, the exact solu-
tion of Chen [3], the approximate solution of Tien,
and the approximate solution of Shenoy and Ulbrecht
[6]. As one can see for n = 1, all the values are very
close. For n = 0.5, our value is exactly the same as
that of Chen’s [11], but lower than the value obtained
by others.

3.2. Natural convection over a horizontal cylinder

Consider a long horizontal circular cylinder placed
in a power-law fluid. For such a case, the radius of
the cylinder is chosen for the reference length L and
¢ = sin (x). It follows that

U = [2(1 —cos (x))] 2 (37)
E= an[2(l —cos (x))] ¥~ V2 dx (38)

__ (n+Dsin(x)¢
- [2(1 —cos (x))](2n+ 73

A (39)

The relations among the angle measured from the
forward stagnation point and E, &, (n+1)¢dA/dé,
and (n+1)%2d°A/d¢? for n = 0.5, 0.67, and 0.83 are
plotted in Figs. 3 and 4. Using these figures, the shear
stress at the wall and the generalized local Nusselt
number can be computed.

The data obtained using the present method was
compared with the experimental data of Gentry and
Wollersheim [7]. The generalized local Nusselt num-
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Table 5. Comparison of average Nusselt number for a flat plate

NM/G}Q/(Z("Jr ]))P%(J’H- 1)

n Present (P = 100) Chen [3]t Acrivos [1]f Shenoy and Mashelkar [5]t Tien [4]T
0.5 0.569 0.569 0.63 0.5957 0.6098
1.0 0.6723 0.657 0.67 0.6775 0.6838

t Data are valid for Pr » 1.

bers of five different behavior indices ranging from
0.67 to 1.0 including the Newtonian fluid (i.e. water),
are compared. Figure S shows the result for water.
Figures 6 and 7 are the experimental data of the local
free convection results obtained for the 0.053 and
0.055% Carbopol solutions, which agree excellently
with the present work. However, the experimental
results for the last two solutions, shown in Figs. 8 and
9, are 9-12% higher than that calculated by both the
integral-similar method and the present method. No
conclusive reasons have been found so far to explain
these discrepancies. The influence to the local heat
transfer by the flow index decreases with the decrease
of flow index. This phenomena is shown in Fig. 10.

Once the information for x, E, A, &, (n+1)¢ dA/dé,
and (n+1)%2d*A/dE? is given, details of the tem-
perature and velocity distribution in the boundary
layer can be calculated in a straightforward manner from
equations (23) and (24) using either the tabulated
universal functions or the computer programs
developed in this study.

3.3. Natural convection from axisymmetric bodies

The first case considered for the axisymmetric body
is the natural convection from a sphere. If the charac-
teristic length is taken equal to the radius of the sphere
then

r=sinx and ¢ =sinx. (40)

20 40 60 80 100 120 140

{Angle in degrass measured trom forward stognation point)

FiG. 3. Variation of A, ¢ and E along the surface of a
horizontal cylinder.

HMT 31:3-K

The local Nusselt number can be readily obtained as
Nu, = [2(1 —cos x)]"/?+sin x
[0 0] [(1+ DE 1D G, (@a1)

Figure 11 shows Nusselt numbers calculated by the
present series solution with P, = 5500 as well as by
that of Acrivos [1] for n = 0.927.

The effect of the convective term on the heat transfer
rate can be observed by the increase of P;. As
Pp =500, Nu predicted by the present method is
around 4.4% lower than that of Acrivos [1].

For the second case, a vertical cone with its apex
points downward. Under this condition, ¢ = cosy
and r = x. y is the half angle of the apex and its
characteristic length L is set equal to the length of
the cone. The following expressions can be easily
obtained :

n+1
T 4n+3 “2)
2n (2n—1)/2 (o1 + 1 y(4n+3)/2
14 (2cosy)" (sinp)™t ' x W+ 32 0 (43)

T n+3
The local Nusselt number is given by

’ 4n+3 1/(n+ 1)
Nu, = [-0'(A,0,n)] [m:l
X (2608 7)== D2+ Dy —nHnt 1) L G Y2Ant 1)
(44)

The theoretical predictions on laminar natural con-
vection heat transfer from a vertical cone to a power-
law fluid are those of Acrivos [1] and Shenoy [10].

00 10.0
-10 J -20
+ 20 (nened {-404t
g a2
-sor e ol W 4-60
—40F — —n-067 \\\\ +1-8.0
n=0.83 ‘.\
3 Y 4-100

0 26 40 60 80 10 120 140 160
{Angle in degrees mecsured forward siagnaflon POim)
F1G. 4. Variation of (n+ 1)¢dA/d¢ and (n+ 1)*E2d?A/dE?
along the surface of a horizontal cylinder.
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FiG. 7. Comparison of the present work and Gentry and

Wollersheim’s experimental data [7] (n = 0.83).

FiG. 8. Comparison of the present work and Gentry and
Wollersheim’s experimental data {7} (n = 0.77).
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FIG. 11. The effect of P, on local heat transfer rate around

the surface of a sphere (n = 0.927).

Table 6. Comparison of local Nusselt number for a vertical
cone (y = 30°, n = 0.927, P, = 500)

Nux/Gllz/(Z("+ I»P’;{(Sn+ 1)
x Acrivos [1]+  Shenoy [10]f Present (P = 500)

0.06 1.2275 1.1923 1.1699
0.10 1.0830 1.0519 1.0321
0.30 0.8273 0.8036 0.7883
0.50 0.7299 0.7090 0.6955
0.70 0.6721 0.6528 0.6404
1.00 0.6158 0.5982 0.5867
1.50 0.5575 0.5415 0.5312
2.00 0.5196 0.5047 0.4950

tData are valid for large Pj.
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Nusselt numbers calculated by the present method
along with those from Acrivos’ and Shenoy’s methods
are given in Table 6 (for n = 0.927, P, = 500).

It is worthy to note that the present work as well
as that of Acrivos does not include the curvature
effect. Our results agree with those of Acrivos [1] and
Shenoy [10] to within 5%.

4. CONCLUSION

The momentum and heat transfer phenomena
occurring in laminar natural convection to non-New-
tonian power-law fluids has been theoretically exam-
ined. The Merk—Meksyn series expansion method and
the generalized coordinate transformation can trans-
form the partial differential momentum and energy
equations into two sets of infinite-sequence type ordi-
nary differential equations, respectively. The solutions
to these sets of differential equations can be obtained
as universal functions which are tabulated once and
for all for geometries. The technique presented in this
analysis provides a general, accurate, and relatively
simple method to analyze the transport phenomena
in the laminar boundary layer of power-law fluids. In
application, the present results are in good agreement
with those obtained from previous experiments or
other theoretical work. With the present analysis, the
validity of the analysis for large P, is re-examined. The
authors also believe that the results of the velocity and
temperature fields obtained by using this analysis can
significantly improve the prediction of mass transfer
in power-law fluids with heterogeneous surface reac-
tion.
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CONVECTION NATURELLE DE FLUIDES A LOI-PUISSANCE AUTOUR DE CORPS
BIDIMENSIONNELS OU AXISYMETRIQUE DE CONTOUR QUELCONQUE

Résumé—On étudie théoriquement le transfert de quantité de mouvement et de chaleur dans un fluide &

loi-puissance en écoulement sur des corps de forme quelconque bidimensionnelle ou axisymétrique. La

technique de type Merk de développement en série est utilisée pour I’analyse. La solution des équations

est obtenue comme des fonctions universelles qui sont indépendantes de la géométrie du probléme. Avec

les fonctions universelles obtenues, on traite les cas d’une plaque plane verticale, d’un cylindre horizontal,
d’une sphére et d’un cdne vertical et les résultats sont comparés aux résultats déja connus.

NATURLICHE KONVEKTION BEI FLUIDEN MIT NICHTLINEARER
SCHUBSPANNUNG AN ZWEIDIMENSIONALEN ODER
ACHSENSYMMETRISCHEN KORPERN BELIEBIGER GESTALT

Zusammenfassung—Der Impuls- und Wirmetransport in Fluiden mit nichtlinearem Schub-
spannungsansatz an beliebig geformten zweidimensionalen oder achsensymmetrischen Korpern wurde
theoretisch untersucht. Die Merk’sche Reihenentwicklung wurde fiir die Untersuchung verwendet. Die
Ldsung wurde in aligemeiner Form unabhingig von der Geometrie ermittelt. Mit diesen allgemein anwend-
baren Gleichungen wurden die senkrechte ebene Platte, der waagerechte Zylinder, die Kugel und ein
senkrechter Kegel als Beispiele berechnet und mit den vorhandenen Ergebnissen in der Literatur verglichen.

ECTECTBEHHAS KOHBEKLIMS CTEINEHHBIX XUJAKOCTEA BBJIN3H ABYMEPHBIX
WJIA OCECUMMETPUYHBIX TEJ IMPOU3BOJIBHOI ®OPMBI

Ammoramms—Hcnons3ys TexHuxy Mepka pasiiokeHHS B pafbl, NPOBENeH TEOPETHYECKHI aHAJH3 mepe-
HOCA HEMITYJIbCA M TEIUIA B CTENEHHON KHAKOCTH, OKpYXKalomeil AByMepHbIe HIIH OCECAMMETPHYHHIE TeNa
npon3sosbHON GopMbl. TloNydeHO pemeHHe OCHOBHBIX YDaBHEHHI B BHIC YHHBEPCAJbHBIX (DYHKIMiL,
KOTOpble He 3aBHCAT OT reoMeTpu# 3anavd. C moMompio 3THX QYHKUMH HCC/IEIOBaHA ECTECCTBEHHAA
KOHBEKLMS OT BEPTHKA/IbHON IIIOCKOM MIAaCTHHEL, FOPH3OHTAIBHOTO WITAHAPA, IApa H BEPTHKAJIBHOTO
xonyca. ITpoBeieHO CpaBHEHHE NOJTYHEHHBIX Pe3yIbTATOB C ONMyGIMKOBAHHBIME B JTHTEPATYPE JaHHHIMH.



